Making Not So Great Questions Work
- July 15, 2016 -

This blog post offers a bit of reflection from our spring programs. Here Spencer shares his experience in dealing with a group of students who were excited about answering a less than stellar research question.

The struggle of what to do with students who are excited about a not so scientific topic is something I have discussed with numerous teachers. Below is an account of how I dealt this often frustrating problem.


Looking for male pollen cones

While building research projects with a group of 6th graders this past spring, I got to work with what could have been called a bad question. These students were tasked with creating research projects about the spring growth and phenology in pine trees. The students had a 2-hour session in class to design their projects, a 6-hour field day to collect data, and another 2-hour classroom session to analyze their data and present their findings. The first session was going quite smoothly until a group of students became interested in the question, “Can you tell the difference between a girl tree and a boy tree?” To be fair these students were in the middle of a unit on human reproduction and did not know that pine trees have both male and female reproductive organs. Try as I might to tempt them towards a question with more scientific potential, this question was where their interest lay and quenching this upwelling of curiosity would probably disengage them from this learning experience.



Male and Female Pine Cones Diagram from

Flash-forward to the field day, many of the trees in the field site had yet to fully produce the male pollen cones and while the female cones had developed they were located high up in the crown of the tree. As the students were starting to struggle with how to answer their research question, I asked them a few simple questions that helped turn their project around. It started with, “What can you observe here that relates to your research question?” After some thought a student answered, “Well, there are lots of male and female pollen cones from last year on the ground.” To which I challenged them further, “Is there a way you can adjust your research question to include what you can observe here?” Almost immediately someone asked, “Are there more male or female cones on the ground?” After a short deliberation on methodology, the group set out collecting data on what turned out to be a pretty neat project. You can read more about the groups findings at the end of the article.

unspecified-1The main point here is that instead of teaching with a heavy hand and forcing the students to abandon a seemly dead-end question by challenging them to be creative in the face of adversity and reframing their own questions, these students stayed engaged through the learning process and ultimately came up a really interesting research project. Through this, and other experiences teaching, I am convinced that any question, regardless of scientific caliber, can be turned into valuable educational experience.


Their Results: The group found 50% more male cones than female cones, which was contrary to their hypothesis that the female cones would be more numerous since they are larger and easier to find. While smaller pine trees often produce a higher percentage of female cones and larger pine trees produce more male pollen cones, the group surveyed a wide range in size of trees and should have found close to the same numbers of each. One of the reasons the group hypothesized that they found more of last years’ male cones than female cones was that the female cones were eaten. Remember there are far more resources allocated to, and thus nutrients in, an egg than a sperm. The group also examined the cones they found for evidence of consumption. They found that 30% of female cones were at least partially eaten and did not find a single male pollen cone with evidence of herbivory.